Exponential Lower Bound for 2-Query Locally Decodable Codes

نویسندگان

  • Iordanis Kerenidis
  • Ronald de Wolf
چکیده

We prove exponential lower bounds on the length of 2-query locally decodable codes. Goldreich et al. recently proved such bounds for the special case of linear locally decodable codes. Our proof shows that a 2-query locally decodable code can be decoded with only 1 quantum query, and then proves an exponential lower bound for such 1-query locally quantum-decodable codes. We also exhibit q-query locally quantum-decodable codes that are much shorter than the best known q-query classical codes. Finally, we give some new lower bounds for (not necessarily linear) private information retrieval systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Lower Bounds for General Locally Decodable Codes

For any odd integer q > 1, we improve the lower bound for general q-query locally decodablecodes C : {0, 1}n → {0, 1}m from m = Ω(n/ logn)q+1q−1 to m = Ω( nq+1q−1) / logn. For example,for q = 3 we improve the previous bound from Ω(n/ log n) to Ω(n/ logn). For linear 3-querylocally decodable codes C : F → F, we improve the lower bound further to Ω(n/ log log n...

متن کامل

Lower Bounds for Approximate LDCs

We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...

متن کامل

Lower Bounds for Approximate LDC

We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...

متن کامل

Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes

This paper presents essentially optimal lower bounds on the size of linear codes C : {0, 1} → {0, 1} which have the property that, for constants δ, > 0, any bit of the message can be recovered with probability 1 2 + by an algorithm reading only 2 bits of a codeword corrupted in up to δm positions. Such codes are known to be applicable to, among other things, the construction and analysis of inf...

متن کامل

New Constructions for Query-Efficient Locally Decodable Codes of Subexponential Length

A (k, δ, ε)-locally decodable code C : Fnq → F N q is an error-correcting code that encodes each message ~x = (x1, x2, . . . , xn) ∈ F n q to a codeword C(~x) ∈ F N q and has the following property: For any ~y ∈ Fq such that d(~y, C(~x)) ≤ δN and each 1 ≤ i ≤ n, the symbol xi of ~x can be recovered with probability at least 1−ε by a randomized decoding algorithm looking only at k coordinates of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره   شماره 

صفحات  -

تاریخ انتشار 2002